Sequences of numbers

table of contents

1 Examples for sequences of numbers

1.1 harmonic sequence

Example: $a_n = \frac{1}{n}; n \ge 1; \{a_n\} = 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}...$

 $\lim_{n \to \infty} a_n = 0$

1.2 alternating sequence

Example: $a_n = (-1)^n$; $n \ge 0$; $\{a_n\} = 1, -1, 1, -1...$

 $\lim_{n \to \infty} a_n \text{ does not exist.}$

1.3 recursive presentation of a sequence

Example:
$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{2}{a_n} \right); n \ge 1; a_1 = 1$$

 $a_2 = \frac{3}{2}$
 $a_3 = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} \right); a_3 = \frac{17}{12} = 1,41667$
 $a_4 = 1,41422$

Under the assumption, that the sequence a_n converges against a limit a^* , one can give an estimate of a^* :

$$a^* = \frac{1}{2}\left(a^* + \frac{2}{a^*}\right)$$

From the last equation it follows $2a^* = \frac{(a^*)^2 + 2}{a^*}$

$$2(a^*)^2 = (a^*)^2 + 2, \ (a^*)^2 = 2; a^* = \sqrt{2}$$

The proof of convergence to $\sqrt{2}$ is presented by the link below. This proof is not subject of the tutorial.

convergence against the square root of 2

1.4 arithmetic sequence

For an arithmetic sequence the following definition holds: $a_{n+1} - a_n = d$; $n \ge 0$. d is a constant real number.

Example: $a_0 = 2; a_1 = 4; a_2 = 6; a_3 = 8...,$ it follows $a_{n+1} - a_n = 2$

1.5 geometric sequence

$$\frac{a_{n+1}}{a_n} = q; n \ge 0; a_0 \ne 0; q > 0$$

Example

$$a_{0} = 2; a_{1} = 4 \Rightarrow \frac{a_{1}}{a_{0}} = 2;$$

$$a_{2} = 8, a_{3} = 16..., \frac{a_{2}}{a_{1}} = 2, \frac{a_{3}}{a_{2}} = 2$$

$$a_{n} = 2^{n+1}; n \ge 0$$

$$\frac{a_{n+1}}{a_{n}} = \frac{2^{n+2}}{2^{n+1}} = 2$$

$$q = 2$$

2 Limit theorems

In the following it is assumed that for all limits n approaches ∞ .

2.1 LT 1: $a_n \rightarrow a$ and $b_n \rightarrow b$, $a_n + b_n \rightarrow a + b$, $a_n \cdot b_n \rightarrow a \cdot b$

The sequence $\{a_n\}$ shall converge against a real number a and the sequence $\{b_n\}$ shall converge against a real number b. Then the sequence $\{a_n + b_n\}$ converges against the limit a + b and the sequence $\{a_n \cdot b_n\}$ converges against $a \cdot b$.

Examples:
$$3 + \frac{2}{n}$$
; $\frac{6}{n}$
 $a_n = 3, b_n = \frac{2}{n}$
 $a_n + b_n = 3 + \frac{2}{n}$; $a_n \cdot b_n = \frac{6}{n}$
 $a = \lim_{n \to \infty} a_n$; $a = 3$; $b = \lim_{n \to \infty} b_n$; $b = 0$
 $a + b = \lim_{n \to \infty} (a_n + b_n)$; $a + b = 3$
 $a \cdot b = \lim_{n \to \infty} (a_n \cdot b_n)$; $a \cdot b = 0$

2.2 LT 2: $a_n \to a$ and $b_n \to b$, $b \neq 0$, $\frac{a_n}{b_n} \to \frac{a}{b}$

If the sequence $\{a_n\}$ converges against a real number a and the sequence $\{b_n\}$ converges against a real number $b \neq 0$, then the sequence $\{\frac{a_n}{b_n}\}$ converges against the real number $\frac{a}{b}$

Example: $\frac{3 + \frac{2}{n}}{1 + \frac{3}{n}}$ $a_n = 3 + \frac{2}{n}, b_n = 1 + \frac{3}{n}$ $3 + \frac{2}{n} \text{ converges against } 3; a = 3$ $1 + \frac{3}{n} \text{ converges against } 1; b = 1$

It follows

$$\frac{3+\frac{2}{n}}{1+\frac{3}{n}}$$
 converges against $\frac{a}{b} = 3$

2.3 LT 3: $a_n \to \infty$ and $b_n \to b$, $a_n + b_n \to \infty$

Assumption: $\lim_{n \to \infty} a_n = \infty$

If $\{b_n\}$ converges against a real number b, then it follows $\lim_{n \to \infty} (a_n + b_n) = \infty$

Example:

$$a_n = 4n, b_n = \frac{8}{n}$$
$$\lim_{n \to \infty} 4n = \infty, \lim_{n \to \infty} \frac{8}{n} = 0; b = 0$$
it follows
$$\lim_{n \to \infty} (a_n + b_n) = \infty$$

2.4 LT 4: $a_n \to \infty$ and b_n gegen $b \neq 0$, $a_n \cdot b_n$

The product sequence $\{a_n \cdot b_n\}$ converges against $+\infty$, if b > 0 and against $-\infty$, if b < 0.

Example:
$$(1+n)\left(-3+\frac{1}{n}\right)$$

 $a_n = 1+n, b_n = \left(-3+\frac{1}{n}\right)$
 $\lim_{n \to \infty} a_n = \infty, \lim_{n \to \infty} b_n = -3; b = -3$
 $\lim_{n \to \infty} (a_n \cdot b_n) = -\infty$

additional calculation:

$$(1+n)(-3+\frac{1}{n}) = -3-3n+\frac{1}{n}+1$$
 converges against $-\infty$

2.5 LT 5: $a_n \rightarrow a$, $a \neq 0$, $b_n \rightarrow \infty$, $\frac{a_n}{b_n} \rightarrow 0$

Assumption: $\lim_{n \to \infty} b_n = \infty$ and $\lim_{n \to \infty} a_n = a$ with $a \neq 0$ Then it follows $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$ Example: $\frac{2 + \frac{1}{n}}{3 + n}$ $a_n = 2 + \frac{1}{n}; b_n = 3 + n$ $a_n \to 2; b_n \to \infty$ $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$

2.6 LT 6: $a_n \to \infty$ and $b_n \to \mathbf{b}$; $b \neq 0$, $\frac{a_n}{b_n} \to \infty$

Assumption: $\lim_{n \to \infty} a_n = \infty$ and $\{b_n\}$ converges against a real number $b \neq 0$. Then it follows $\lim_{n \to \infty} \frac{a_n}{b_n} = \infty$ Example: $\frac{2+n^2}{1+\frac{1}{n}}$ $a_n = 2+n^2$ $b_n = 1+\frac{1}{n}$ $a_n \to \infty; b_n \to 1; b = 1$ $\lim_{n \to \infty} \frac{a_n}{b_n} = \infty$

2.7 LT 7: $a_n \to a$, $a \neq 0$ and $b_n \to 0$, $\frac{a_n}{b_n}$

Assumption: $\lim_{n \to \infty} a_n = a$ and $a \neq 0$. The sequence $\{b_n\}$ converges against 0. If a > 0 then $\lim_{n \to \infty} \frac{a_n}{b_n} = \infty$ If a < 0 then $\lim_{n \to \infty} \frac{a_n}{b_n} = -\infty$ Beispiel: $\frac{1 + \frac{1}{n}}{\frac{1}{n}}$ $a_n = 1 + \frac{1}{n}, b_n = \frac{1}{n}$

$$\lim_{n \to \infty} a_n = 1, \lim_{n \to \infty} b_n = 0$$

It follows
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \infty$$

Inhaltsverzeichnis

1	Exa	mples for sequences of numbers	1
	1.1	harmonic sequence	1
	1.2	alternating sequence	1
	1.3	recursive presentation of a sequence	1
	1.4	arithmetic sequence	1
	1.5	geometric sequence	2
2	Limit theorems		2
	2.1	LT 1: $a_n \to a$ and $b_n \to b$, $a_n + b_n \to a + b$, $a_n \cdot b_n \to a \cdot b$	2
	2.2	LT 2: $a_n \to a$ and $b_n \to b, b \neq 0, \frac{a_n}{b_n} \to \frac{a}{b}$	2
	2.3	LT 3: $a_n \to \infty$ and $b_n \to b$, $a_n + b_n \to \infty$	3
	2.4	LT 4: $a_n \to \infty$ and b_n gegen $b \neq 0, a_n \cdot b_n \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	3
	2.5	LT 5: $a_n \to a, a \neq 0, b_n \to \infty, \frac{a_n}{b_n} \to 0$	4
	2.6	LT 6: $a_n \to \infty$ and $b_n \to b$; $b \neq 0$, $\frac{a_n}{b_n} \to \infty$	4
	2.7	LT 7: $a_n \to a, a \neq 0$ and $b_n \to 0, \frac{a_n}{b_n}$	4